9x^2+30xy+25y^2=0

Simple and best practice solution for 9x^2+30xy+25y^2=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9x^2+30xy+25y^2=0 equation:


Simplifying
9x2 + 30xy + 25y2 = 0

Reorder the terms:
30xy + 9x2 + 25y2 = 0

Solving
30xy + 9x2 + 25y2 = 0

Solving for variable 'x'.

Factor a trinomial.
(3x + 5y)(3x + 5y) = 0

Subproblem 1

Set the factor '(3x + 5y)' equal to zero and attempt to solve: Simplifying 3x + 5y = 0 Solving 3x + 5y = 0 Move all terms containing x to the left, all other terms to the right. Add '-5y' to each side of the equation. 3x + 5y + -5y = 0 + -5y Combine like terms: 5y + -5y = 0 3x + 0 = 0 + -5y 3x = 0 + -5y Remove the zero: 3x = -5y Divide each side by '3'. x = -1.666666667y Simplifying x = -1.666666667y

Subproblem 2

Set the factor '(3x + 5y)' equal to zero and attempt to solve: Simplifying 3x + 5y = 0 Solving 3x + 5y = 0 Move all terms containing x to the left, all other terms to the right. Add '-5y' to each side of the equation. 3x + 5y + -5y = 0 + -5y Combine like terms: 5y + -5y = 0 3x + 0 = 0 + -5y 3x = 0 + -5y Remove the zero: 3x = -5y Divide each side by '3'. x = -1.666666667y Simplifying x = -1.666666667y

Solution

x = {-1.666666667y, -1.666666667y}

See similar equations:

| (2u^2)-13u+7=(u^2)-25 | | -2n-6=-18 | | 0.65x=1673.75 | | 13/1*2/5-5/6 | | n/3-2=-12 | | 2200+1/5x=4000 | | 1/3x-2x=-10 | | 30+6c=5c-4 | | x/-5+1=7 | | 0.65x=3250 | | .33*(.25x)=20 | | 3x+4=-62 | | 4x+2+4x+2+5x-5+5x-5=48 | | 2(w+1)+4=4(w+1) | | 14/3/5 | | 7x-2=3(1+3x) | | -30x=(9x^2)+25 | | (9-8)x(-1)= | | X+23+2x=-19-2x-23 | | 30+7x=205 | | 8x+9=3(5+3x) | | 10x^4y^5+15x^3y^6= | | 3/5x-4=10 | | 3(v+1)-5=3v-2 | | 0.5=-2.4+x | | 7n-16=45+17 | | -3*((-7*(-4))/2) | | 3w+7=w-1 | | (9w^2)-30w=-25 | | 637+676= | | 2x+10+8=0 | | 2x(x+1)=5(x-4) |

Equations solver categories